Исследована гемолитическая активность \(N,N' \)-замещенных пиперазинов, а также их влияние на гемолитический процесс, ингибитором которого является \(N,N' \)-диметилпиперазин. Все соединения исследованы в дозах 0,15 и 3 мкМ. Обнаружено, что большинство пиперазинов оказывали гемолитическое действие, причем при дозах 3 мкМ гемолитический эффект был максимальным.

Ключевые слова: \(N,N' \)-замещенные пиперазины; антагонисты; антиоксиданты.

Производные пиперазина имеют широкий спектр биологического действия и успешно применяются в различных областях медицины [1, 2]. Создание новых лекарственных препаратов на основе замещенных пиперазинов и всестороннее исследование их свойств представляет несомненный интерес. Так, ранее нами показано [3], что \(N,N' \)-замещенные пиперазины проявляют антигипертензивную, антигипертензивную и восстановительную активность. Кроме того, они могут быть использованы для создания лекарственных препаратов. При этом важно оценивать и ингибиторную активность препаратов, предназначенных для терапии заболеваний системы гемостаза, так как пиперазин и, в частности, пиперазин, вызывает прием препарата, являются серьезной терапевтической проблемой [4, 5].

Известно, что незначительные изменения в структуре физиологически активных соединений приводят к существенному изменению их биологической активности [6].

Целью настоящей работы явилось изучение гемолитической активности новых \(N,N' \)-замещенных пиперазинов (I, II, III, см. табл. 1), отличающихся по химической структуре, а также оценка их влияния на различные виды гемолиза: 1) фетогемолиз, обусловленный окислительным стрессом; 2) комплементзависимый гемолиз, не требующий участия активных форм кислорода. Синтез \(N,N' \)-замещенных пиперазинов проведен в работе по научной работе ЗАО “ВЕРТЕКС”.

Экспериментальная химическая часть

Контроль степени протекания реакции и чистоты полупродуктов на каждой стадии синтеза проводили методом ТСХ на пластинах Merck “TLC Silicagel 60 F:254” или Macherey-Nagel “ALUGRAM SIL G/UV254” (проявление с помощью УФ-облучения). Спектры ЯМР \(\text{C} \) и ЯМР \(\text{H} \) регистрировали на спектрометре Bruker DRX-500 (Германия) с частотой 500,13 МГц для ЯМР \(\text{H} \) и 125,76 МГц для ЯМР \(\text{C} \), в качестве стандарта использовали сигнал остаточного растворителя: CDCl3 (7,28 м.д.), D2O (4,80 м.д.), DMSO-d6 (2,50 м.д.). Масс-спектры получали на масс-спектрометре Bruker AmaZon (ионизация по методу электронпробега). Оценку чистоты соединений проводили методом ВЭЖХ на хроматографе Alliance (Waters, США), используя колонки Zorbax Eclipse XDB-C18, 3,5 мм, 3 · 100 мм (Agilent Technologies, США), подвижная фаза — смесь буферного раствора pH 3,0, содержащего 0,0125 М натрия октансульфоната (Merek, #1,18307) и 0,03 М натрия диэтаноламина (Merek, #1/06342) с ацетонитрилом (J. Baker, #9012) в соотношении 75:25, скорость потока подвижной фазы 0,5 ми/мин, элюирование проводили в ионогидратном режиме, детектирование — при 210 нм.

1-Карбимидамино-4-(2,3,4,5-тетрагидроксибензил)ниперазина гемйниферамат (I). 1-Карбимидамино-4-(2,3,4,5-тетрагидроксибензил)ниперазина ацетат (IV) получают как описано нами ранее [3]. 39,0 г (95 моль) ацетата IV растворяют в горячей воде (125 мл, ~ 60 °C), к полученному раствору прибавляют горячий (~ 60 °C) раствор фумаровой кислоты (5,2 г, 45 мголь в виде 75 мл). Образовавшийся осадок отделяют фильтрованием и промывают на фильтре водой (3 × 75 мл) и перекристаллизовывают из горячей воды, получают I в виде бесцветных кристаллов (30,3 г, 78%). Спектр ЯМР \(\text{H} \) (DMSO-d6), δ, м.д. (J, Гц): 3,25 (м., 2Н, \(\text{CH}_2 \)-ниперазинового фрагмента), 3,39 (м, 4Н, \(\text{CH}_2 \)-ниперазинового фрагмента и \(\text{H}_2 \)).
Зависимость времени жизни 50 % эритроцитов (T50) от концентрации соединений, % к контролю (физиологический раствор).
Значение T50 для контроля (87 ± 15) с. * — различия статистически значимы по сравнению с контролем, p < 0,05 (α = 5).

3,51 (м, 2Н, СН2-пиперазинового фрагмента), 3,65 (м, 5Н, СН2-пиперазинового фрагмента и СН2О-), 3,76 (м, 3Н, СН2О-), 3,78 (м, 3Н, СН2О-), 3,83 (м, 3Н, СН2О-), 6,21 (с, 1Н, ХО2СС-СН2СО2Н), 6,67 (с, 1Н, H-Ar), 9,43 (вн.д., 4Н, СН(Н)2(Н)2). Спектр ЯМР 13С (DMSO-d6), δ, м.д.: 40,64 (СН2-пиперазинового фрагмента), 44,29 (СН2-пиперазинового фрагмента), 44,82 (СН2-пиперазинового фрагмента), 45,63 (СН2-пиперазинового фрагмента), 56,17 (СН2О-), 60,68 (СН2О-), 61,06 (СН2О-), 61,52 (СН2О-), 105,43 (С6, Ar), 124,54 (С1, Ar), 136,56 (ХО2СС=СН2СО2Н), 143,04 (С2, Ar), 143,20 (С5, Ar), 146,48 (C4, Ar), 149,51 (C3, Ar), 157,43 (СН(Н)2(Н)2), 166,16 (CON), 172,12 (ХО2СС=СН2СО2Н). Масс-спектр: МН1 найдено — 353,20, МН1 вычислен — 353,18. Чистота продукта по данным ВЭЖХ — 100 %.

1-Карбимидамидо-4-(2-[1-метилпропил]окси-3,4,5-триметоксиbensил)пиперазина гемифурамат (II)

2-Бром-3,4,5-трибутоксиbensилная кислота (V). К раствору 3,4,5-триметоксиbensилной кислоты (106,0 г; 0,50 моль) в хлороформе (500 мл) прибавляют воду (10 мл). Реакционную смесь нагревают до температуры кипения. К кипящей смеси при перемешивании прибавляют капли раствора брома (32,2 г; 99,8 г; 0,626 моль) в хлороформе (100 мл) в течение 30 мин, смесь кипятят с обратным холодильником на воздухе. Охлажденную реакционную смесь приливают водой (3 × 200 мл) и сушат над безводным сульфатом магния. Осушитель удаляют фильтрованием. Фильтрат упаривают на ротационно-вакуумной испарительной при пониженном давлении. Получают в виде кристаллов бедно-кремового цвета (120,8 г; 83 %) и используют на следующей стадии дополнительной очистки. Спектр ЯМР 1Н (CDCl3) м.д. (В, Г): 3,92 (3Н, СН2О-), 3,93 (3Н, СН2О-), 3 (3Н, СН2O-), 7,42 (с, 1Н, Н-Ар), 11,0 (вн.д., СН2О). Чистота продукта по данным спектроскопии ЯМР 1Н и ТСХ составляет 95 %.

2-Гидрокси-3,4,5-триметоксиbensилная кислота (VI). К горячему раствору кислоты V (60, 0,206 моль) и гидроксида натрия (50,0 г; 1,25 моль) в воде (400 мл) прибавляют при перемешивании сульфат меди(II) в виде пентагидрата (51,4 г; 0,206 моль) и кипятят реакционную смесь в течение 3,5 ч (через 2 ч после начала кипения для поддержания пепсобразования в реакционную смесь добавляют 1-бутанол (10 мл)), реакционную смесь охлаждают, образовавшийся осадок отделяют фильтрованием. Осадок суспензируют в 5 % растворе гидроксида тетра(200 мл), перемешивают в течение 1 ч, после чего отдельют фильтрованием (данный процесс повторяют трижды). Выделившийся осадок суспензируют в воде (200 мл) и подкисляют концентрированной соляной кислотой (50 мл, 60,0 г; 0,6 моль). Выпавший осадок отделяет фильтрованием, промывают фильтреткой водой (3 × 100 мл) и сушат в вакууме. Дукт получает в виде кристаллов бедно-кремового цвета (8,46 г; 18 %).

Спектр ЯМР 1Н (CDCl3), δ, м.д. (V, Г): 3,87 (3Н, СН2О-), 3,95 (3Н, СН2О-), 4,05 (3Н, СН2О-), 5,5 (в 1Н, Н-Ар), 7,17 (с, 1Н, Н-Ар), 10,31 (с, 1Н, СН2О).

<table>
<thead>
<tr>
<th>Соединение</th>
<th>Структурная формула</th>
<th>Молек. масса</th>
<th>lgP</th>
<th>pKa</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>410,15</td>
<td>0,2</td>
<td>11,55</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>452,50</td>
<td>1,42</td>
<td>11,53</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>474,49</td>
<td>0,36</td>
<td>11,51</td>
</tr>
</tbody>
</table>

Химико-фармацевтический журнал. Том 49, № 11,
данным спектроскопии ЯМР 1Н и ТСХ степень чисто-
ты кислоты VI — 99,5 %.

Метил-2-гидрокси-3,4,5-триметоксибензоат (VII). К кипящему раствору кислоты VI (18,2 г, 0,080 моль) в ацетоне (150 мл) прибавляют при перемешивании норными безводный карбонат натрия (20,4 г, 0,192 моль), а затем диметилсульфит (9,1 мл, 12,1 г, 0,096 моль). Реакционную смесь кипятят с обратным хо-
лодильником при перемешивании в течение 3 ч. Осадок неорганических солей отделяют от охлажденной реакционной смеси фильтрованием. Фильтрат упари-
вают на ротационно-вакуумном испарителе при пониженном давлении. Повышенный остаток растворяют в этаноле (200 мл) и последовательно промывают нысыщенным раствором гидрокарбоната натрия в воде (2 х 50 мл), водой (2 х 50 мл) и нысыщенным раствором хлорида натрия (50 мл), сушат над безводным сульфатом магния. Осушитель отделяют фильтрованием, фильтрат упаривают на ротационно-вакуумном испарителе при пониженном давлении, остаток перекристаллизовывают из гептана. Эфир VII получают в виде крупных кристаллов бесцветного насыщенного раствора (11,6 г, 60 %). Спектр ЯМР 1Н (CDCl3), δ, м.д. (J, Гц): 1,06 (3H, 6 Гц, CH3CH2C=HCH3), 1,29 (д, 3H, 6 Гц, CH3CH2C=HCH3), 1,8 (м, 2H, CH2CH2C=HCH3), 3,90 (с, 6Н, 2CH3), 4,00 (с, 3H, CH2-O), 4,73 (м, 4H, CH3CH2C=HCH3), 7,45 (с, 1Н, H-Ар), 11,56 (ш.с 1Н, CO2Н). Спектр ЯМР 13С (CDCl3), δ, м.д.: 9,92 (CH2CH2C=HCH3), 19,01 (CH3CH2C=HCH3), 29,54 (CH2CH2C=HCH3), 56,19 (CH3-O), 61,22 (CH2-O), 61,33 (CH3-O), 83,51 (CH3CH2C=HCH3), 108,00 (С1, Ar), 117,20 (С6, Ar), 144,49 (С2, Ar), 145,96 (С5, Ar), 147,92 (С3, Ar), 149,70 (С4, Ar), 165,36 (СО2Н). По данным спектроскопии ЯМР 1Н и ТСХ степень чисто-
ты кислоты VIII составляет 99,8 %.

2-(1-Метилпропил)окси-3,4,5-триметоксибензо-
илхлорид (X). К раствору кислоты IX (5,0 г, 0,018 моль) в хлористом метилене (25 мл) добавляют хлористый титанил (2,50 мл, 4,18 г, 0,035 моль) и ДМФА (0,01 мл). Смесь перемешивают при комнатной температуре в течение 1 ч, далее кипятят с обратным холодильником в течение 2 ч и упаривают на ротаци-
онно-вакуумном испарителе при пониженном давле-
нии. Полученный продукт разделяют на постоянные выходы (5,32 г, 100 %) в виде массы желтого цвета и ис-
пользуют на следующей стадии без дополнительной очистки.

1-(трет-Бутоксикарбонила)-4-(2-[1-метилпропи-
л]окси-3,4,5-триметоксибензил)динериазин (XI). К раствору 1-(трет-бутоксикарбонила)динериазина (3,76 г, 0,020 моль) и триэтиламина (4,20 мл, 3,02 г, 0,030 моль) в хлористом метилене (25 мл) при перемешивании добавляют по каплям раствор X (5,32 г, 0,018 моль) в хлористом метилене (25 мл), после чего реакционную смесь перемешивают в течение 3 ч, фильтруют, отделяя выпавший осадок гидроксид триэтиламина. Фильтрат последовательно промывают водой (2 х 20 мл), насыщенным раствором хлористого аммония (2 х 20 мл), водой (2 х 20 мл), насыщенным

| Таbлица 2 |
|-----------------|-----------------|-----------------|
| Параметры активации комплекса человека в присутствии |
| NADH-замещенных инверазин, в % к контролю (физиоло-
| гический раствор) |
Соединение	Концентрация, мМ					
0,15 (< 5)	0,6 (<= 5)	1,5 (> 5)				
T-лаг	V	T-лаг	V	T-лаг	V	
I	101 ± 10	102 ± 6	99 ± 9	107 ± 7	110 ± 10	99 ± 5
II	97 ± 11	101 ± 4	104 ± 16	101 ± 3	110 ± 14	98 ± 12
III	99 ± 13	106 ± 9	107 ± 12	100 ± 7	105 ± 10	103 ± 7

Химико-фармацевтический журнал. Том 49, № 11, 2015
раствором гидрокарбоната натрия (2×20 мл), насыщенным раствором хлорида натрия (20 мл) и сушат над безводным сульфатом магния. Оушитель отделяют фильтрованием, фильтрат упаривают на ротационно-плоскочом испарителе при пониженном давлении. Полупродукт получают с косвенным выходом 79,5 г (100 %) в виде масла желто-коричневого цвета, которое медленно кристаллизуется при стоянии в кристаллы кремового цвета, и используют на следующей стадии без дополнительной очистки. Спектр ЯМР 1H (CDCl3), δ, м.д. (J, Гц) (из-за затрудненного вращения вокруг амидной связи в ЯМР-спектре проходят 2 изомера): 0,87 и 1,01 (два д, 7,4 и 7,6 Гц соответственно, суммарно 3H, CH3-CH2-C-CH3), 1,09 и 1,27 (два д, 5,9 и 5,9 Гц соответственно, 3H, CH3-CH2-C-CH3), 1,49 (с, 9Н, (CH3)2-C), 1,66 (м, 2Н, CH2-CH2-C-CH3), 3,0–4,0 (м, 17Н, 4×CH2-непириазонового фрагмента и 3×CH3-O-), 4,19 (м, 1Н, CH2-CH2-C-CH3), 6,60 и 6,62 (два с, суммарно 11Н, H-Arg).

Гидрохлорид 1-(2-[1-метилпропил]оксис-3,4,5-триметоксисицил)нинеципрена (XII). Смешивают основание XII (79,5 г, 0,018 моль) с концентрированной соляной кислотой (50 мл, 60 г; ~0,6 моль). Реакционную смесь перемешивают при комнатной температуре до полной гомогенизации (3 ч), упаривают на ротационно-плоскочом испарителе при пониженном давлении. Остаток нагревают с 2-пропанолом (100 мл), после чего отделяют нерастворимые примеси фильтрованием через цеолит. Фильтрат упаривают на ротационно-плоскочом испарителе при пониженном давлении. Полученный полуфинал XII (663 г, 97 %) используют на следующей стадии без дополнительной очистки.

1-Карбимидамид-4-(2-[1-метилпропил]оксис-3,4,5-триметоксисицил)нинеципрена (анант III). К раствору гидрохлорида XII (64,87 г, 17 моль) и гидрохлорида 1H-пирозол-1-карбимидамида (3,66 г, 25 моль) в DMF (20 мл), нагретого до температуры 50 °С, прибавляют динитробензолитиламины (8,00 мл, 5,92 г; 46 моль), смесь перемешивают при температуре 50 °С в течение 10 ч, упаривают на ротационно-плоскочом испарителе при пониженном давлении. Остаток растворяют в воде (120 мл) и экстрагируют трет.-бутилметиловым эфиром (3×30 мл). Органические экстракти отбрасывают. Прозрачный водный слой подщелячивают 50 % раствором гидроксида натрия в воде (35 мл) и экстрагируют хлористым метиленом (3×30 мл). Объединенные органические экстракты промывают водой (2×20 мл), сушат над безводным карбонатом калия, осушитель отделяют фильтрованием. Фильтрат упаривают на ротационно-плоскочном испарителе при пониженном давлении. Остаток, представляющий собой 1-карбимидамино-4-(2-[1-метилпропил]оксис-3,4,5-триметоксисицил)нинеципрена (3,90 г, 10 моль), растворяют в хлористом метилене (20 мл), к раствору прибавляют холодную уксусную кислоту (0,56 мл, 0,59 г, 10 моль). Образовавшийся осадок отделяют фильтрованием, последовательно промывают на фильтре хлористым метиленом (2×5 мл) и трет.-бутилметиловым эфиром (3×10 мл), после чего осадок суспендируют в смеси ацетона (20 мл) и воды (2 мл). Полученную суспензию кипятят с обратным холодильником при перемешивании в течение 1 ч, охлаждают. Осадок отделяют фильтрованием, промывают на фильтре ацетоном (2×5 мл) и сушат в вакууме. Продукт XII получают в виде мелких бесцветных кристаллов (4,90 г, 53 %);

Спектр ЯМР 1H (DMSO-d6), δ, м.д. (J, Гц): 0,90 (т, 3H, CH3-C-CH3), 1,09 (л, 3H, 6H CH3-C-CH3), 1,64 (м, 5H, CH2-CH2-C-CH3, CH2-CO3-), 3,0–4,0 (м, 17H, 4×CH2-непириазонового фрагмента и 3×CH3-O-), 4,12 (м, 1H, CH2-CH2-C-CH3), 6,62 (с, 1H, H-Arg), 8,20 (уш. c, 4H, C(NH2)(N=NH)),

Спектр ЯМР 13C (DMSO-d6), δ, м.д.: 101 (CH2-CH2-C-CH3), 20,02 (CH2-CH2-C-CH3), 25 (CH2-CO3-), 30,16 (CH2-CH2-C-CH3), 41,50 (CH2-непириазонового фрагмента), 45,05 (CH2-непириазонового фрагмента), 45,63 (CH2-непириазонового фрагмента), 46,27 (CH2-непириазонового фрагмента), 56 (CH2-O-), 61,49 (CH2-O-), 61,72 (CH2-O-), 81 (CH2-CH2-C-CH3), 106,84 (C6, Ar), 126,32 (C1, A, 141,43 (C2, Ar), 144,31 (C5, Ar), 147,59 (C4, Ar), 150 (C3, Ar), 158,42 (C(NH2)(N=NH2)), 167,44 (CON), 176, (CH2-CO3-).

Чистота по данным ВЭЖХ составила 99,6 %, максимальная неидентифицированная фракция — 0,1 %, сумма неидентифицированных фракций — 0,3 %.

1-Карбимидамид-4-(2-[1-метилпропил]оксис-3,4,5-триметоксисицил)нинеципрена гидрофумат (Анант III, 3,5 г, 7,7 ммоль) растворяют в горячей воде (10 мл, ~60 °С). К полученному раствору прибавляют горячий (~60 °С) раствор фумаровой кислоты (0,45 г, 3,85 ммоль) в воде (5 мл). Образовавшийся осадок отделяют фильтрованием, промывают фильтром водой (3×5 мл), перекристаллизовывают горячей водой. Получают гидрофумат II в виде светло-бордовых кристаллов (3,21 г, 92 %).

Спектр ЯМР 1H (DMSO-d6), δ, м.д. (J, Гц): 0,97 (3H, 6G, CH2-CH2-C-CH3), 1,11 (д, 3H, 6 CH2-CH2-C-CH3), 1,66 (м, 2H, CH2-CH2-C-CH3), 3,0–4,0 (м, 17H, 4×CH2-непириазонового фрагмента и 3×CH3-O-), 4,15 (м, 1H, CH2-CH2-C-CH3), 6,20 (с, CH2-CH2-C-CH3), 6,62 (с, 1H, H-Arg), 8,30 (уш. с, C(NH2)(N=NH2)).

Спектр ЯМР 13C (DMSO-d6), δ, м.д.: 101, 101, 101 (CH2-CH2-C-CH3), 20,12 (CH2-CH2-C-CH3), 25, 25 (CH2-CO3-), 30,16 (CH2-CH2-C-CH3), 41,51 (CH2-непириазонового фрагмента), 45,15 (CH2-непириазонового фрагмента), 45,66 (CH2-непириазонового фрагмента), 46 (CH2-непириазонового фрагмента), 57, 57, 57 (CH2-O-), 61,59 (CH2-O-), 61,75 (CH2-O-), 81,40 (CH2-CH H2), 106,88 (C6, Ar), 126,33 (C1, A), 12 (HO-CH2-CH-CO2H), 141,45 (C2, Ar), 144,32 (C5, Ar), 147,60 (C4, Ar), 150,21 (C3, Ar), 158,42 (C(NH2)(N=NH2)), 167,41 (CON), 172,13 (HO-CH2-CH-CO2H).
фицированной примеси — 0,1 %, сумма неидентифицированных примесей — 0,2 %.

1-Карбимидамидо-4-(3,4,5-триметоксиfenилсульфонил)пиразина фумарат (III). 1-Карбимидамидо-
4-(3,4,5-триметоксиfenилсульфонил)пиразина гидрохлорид (5 г, 12,7 ммоль), полученный как описано
нами ранее [3], обрабатывали 50 % раствором гидрорскида натрия в воде (35 мл) и экстрагируют хлори-
стым метиленом (3 × 30 мл). Объединенные органиче-
ские экстракты промывают 20 мл воды, сушат над безводным карбонатом калия, отщепляют фильтрат.
Фильтрат упаривают на ротационно-
плоночном испарителе. Остаток растворяют в воде,
добавляют фумаровую кислоту (1,47 г, 12,7 ммоль), воду удаляют на ротационно-
плоночном испарителе при пониженном давлении. Полученный остаток су-
спензируют в смеси ацетона (40 мл) и воды (2 мл), су-
спензию кипятят с обратным холодильником при пере-
мершении в течение 1 ч, охлаждают. Осадок отде-
ляют фильтрованием, промывают на фильтре ацетоном
(2 × 10 мл), сушат в вакууме. Продукт получают в виде
мелких бесцветных кристаллов (3,3 г, 55 %).

Спектр ЯМР 1H (DMSO-d6), δ, м.д. (J, Гц): 3,03 (4H, m, 2xCH2-пиперазинового фрагмента), 3,50 (4H, m,
2xCH2-пиперазинового фрагмента), 3,77 (3H, CH3-), 3,88 (2H, 2xCH2O-), 6,41 (2H, HO2C=CHCO2H), 6,89 (2H, Н-Ар), 8,50 (2H, Н, C(NH2)(N2H3)). Спектр ЯМР 13C (DMSO-d6), δ, м.д.:
44,18 (С-1пиперазинового фрагмента), 45,22 (С-2пиперазинового фрагмента), 56,36 (2xCH2O-), 104,97 (С2, Ar), 129,56 (С1, Ar), 135,34 (HO2C=CHCO2H), 141,36 (C4, Ar), 153,12 (C3, Ar), 156,92 (C=NH2 и N=NH2), 168,63 (HO2C=CHCO2H). Масс-спектр: МН+ найдено – 358,15, МН+ вычислено –
358,13. Чистота по данным ВЭЖХ – 99,7 %, макси-
мальная неидентифицированная примесь – 0,1 %, сум-
ма неидентифицированных примесей – 0,2 %.

В качестве показателя гидрофобности синтезиро-
ванных соединений использовали значение lgP (лога-
ритм отношения концентрации неионизированного со-
единения в системе октанол — вода), в качестве пока-
зателя основности — значение рКа (табл. 1). Расчет значений рКа проводили по программе, приведенной
на сервере www.chemicalse.org (chemAxon), lgP — по программе, приведенной на сервере

Экспериментальная биологическая часть

В работе использована кровь практически здоровых людей (20 – 30 лет) и кроликов (2,5 – 3,0 кг, питомник
“Рапполово”).

Эритроциты получали из цитратной крови центри-
фугированием при 1500 об/мин в течение 10 мин с по-
следующим трехкратным отмыванием физиологиче-
ским раствором. Далее клетки стабилизировали не
менее 1 сут при 4 °C в реактиве Олсера. Перед исполь-
зованием эритроциты трижды отмывали от реактива
физиологическим раствором и готовили стандартную
взвесь клеток в 5 мМ веронально-медиазоловом буфере
(рН 7,4). Оптическая плотность стандартной взвеси
после разведения ее в 8 раз буферным раствором со-
ставляла (0,560 ± 0,020) при 800 нм. Измерения прово-
дяли на спектрофотометре СФ 2000 (ЛОМО) в кювете
с длиной оптического слоя 5 мм. Полученную стан-
дартную взвесь клеток использовали в исследованиях.

Регистрацию цитолитической активности соедини-
ний осуществляли в термостатируемой кювете (длина
оптического слоя 5 мм) спектрофотометра при 37 °C,
в которую вносили раствор исследуемого соединения
(от 0,01 до 0,2 мл), предварительно разведенного в
физиологическом растворе. Объем смеси доходил до
веронально-медиазолового буфера до 0,7 мл. После про-
гревания в течение 3 мин в смесь добавляли 0,1 мл
стандартной взвеси эритроцитов. Регистрировали сни-
жение оптической плотности взвеси при 800 нм через
5-секундные интервалы до полного гемолиза.

Антикоагулянтные свойства соединений оценивали с использованием устройства для исследования фото-
индукционного цитолиза по методике, опубликованной
ранее [7]. Согласно этой методике в экзикрован-
ной кювете с длиной оптического слоя 5 мм готовили
инкубационную смесь, содержащую 0,1 мл стандарт-
ной взвеси эритроцитов, веронально-медиазоловый бу-
ферный раствор (рН 7,2 – 7,4), разные количества ис-
следуемых соединений, фотосенсибилизатор радиаху-
рон (0,35 % раствор для внутреннего введения,
ООО “РАДАФАРМА”, Россия), основной субстанцией
которого является (78,85)-13-винил-5-(карбооксиме-
тил)-7-(2-карбоксиэтил)-2,8,12,17-тетраметил-18-этил-
7Н,8Н-норфрин-3-карбоновая кислота. В контроле
вместо исследуемого препарата добавляли физиологи-
ческий раствор. Конечная концентрация радиахурона
в пробе составляла 6,25 мкг/мл. Инкубационную
смесь общим объемом 0,8 мл термостатировали в кю-
ветном отсеке спектрофотометра в течение 3 мин при
37 °C и постоянном перемешивании, затем облучали
источником монохроматического света (красный све-
токод 655 нм, выходная мощность — 12 мВт, доза об-
лучения — 1,4 Дж/см2). После завершения облучения
регистрировали снижение оптической плотности рас-
твора при 750 нм.

По регистрируемой гемолитической кривой, имею-
щей плоский S-образный характер, с помощью про-
граммного обеспечения компьютера определяли T90 —
время от завершения облучения до лизиса 50 % эрит-
роцитов инкубационной смеси [7]. По изменению ве-
личины T90 судили о скорости гемолитического про-
цесса.

Регистрацию комплémentазависимого гемолиза осу-
ществляли в термостатируемой при 37 °C кювете
спектрофотометра (длина оптического слоя 5 мм), в
которую добавляли 0,05 мл сыворотки крови человека,
и доводили объем до 0,7 мл с помощью 5 мМ верона-
льно-медиазолового буфера (рН 7,4). После термоста-
тирования смеси в течение 3 мин в нее добавляли
0,1 мл стандартной взвеси эритроцитов кролика. Реги-

Химико-фармацевтический журнал. Том 49, № 11, 2015
стрировали снижение оптической плотности взвеси при 800 нм через 5-секундные интервалы. По гемолитическим кривым определяли параметры комплемент-зависимого гемолиза, а именно: продолжительность индукционного периода (T-lag) в секундах и скорость гемолиза (V), выраженную в миллионах эритроцитов, лигированных за 1 мин [8].

При изучении влияния исследуемого соединения на комплемент-зависимый гемолиз в инкубационную систему добавляли разные количества соединения в физиологическом растворе. В качестве контроля в инкубационную смесь добавляли такое же количество физиологического раствора.

Результаты и их обсуждение

N,N'-замещенные пиразины (табл. 1) представляют собой основные соединения, гидрофобность (lgP) которых возрастает в порядке III, I, II. По основности (pKa) соединения практически не различались.

Все соединения в исследованном диапазоне концентраций (0,15–3,0 мМ) не вызывали лизиса эритроцитов человека.

Известно [9], что лизис эритроцитов индуцируется облучением ультрафиолетовым или видимым светом в присутствии фотосенсибилизаторов, наиболее эффективными из которых являются порфирин и их производные [10], в частности — радахлорин. Выяснилось, что фотодинамический эффект обусловлен прежде всего генерацией синглетного кислорода, а затем и других активных форм кислорода [11]. Связывание порфиринов с мембранами клеток приводит к снижению фотостабильности мембран [10, 12].

N,N'-замещенные пиразины I, II и III статистически значимо, по сравнению с контролем, ингибировали гемолиз, индуцированный радахлорином, что проявлялось в увеличении времени гемолиза 50 % эритроцитов (T50) (рисунок).

Как видно из полученных результатов, ингибирующая активность всех 3 соединений носит полиномиальный, дозозависимый характер. EC50 для II, I и III составляет 1,0, 1,6 и 2,3 мМ соответственно. Сравнение физико-химических свойств и активности (табл. 1, рис. 1) позволяет полагать, что активность соединений при ингибировании фотондуцированного гемолиза возрастает по мере увеличения гидрофобности соединений и количества ароматических заместителей в ароматическом цикле.

Чтобы выяснить, является ли причиной торможения гемолиза N,N'-замещенными пиразинами их антиоксидантный эффект или мембранопротекторные свойства, исследовано влияние соединений на комплемент-зависимый гемолиз (табл. 2).

Комплément-зависимый гемолиз протекает без участия активных форм кислорода. Активация системы комплемента, вызванная чужеродными агентами (эритроцитами кролика) приводит к образованию комплексов мембранной атаки, которые внедряются в мембраны чужеродных клеток, вызывая лизис [13].

Исследования влияния соединений на комплекс зависимый гемолиз не выявили изменений ни T-lag скорости (V) процесса гемолиза.

Полученные результаты указывают на наличие винной антиоксидантной активности у всех исследованных N,N'-замещенных пиразинов, проявляющейся в торможении окислительных процессов на мембранах при фотодинамическом воздействии на эритроциты.

Антиоксидантная активность N,N'-замещенных пиразинов, изучаемых в настоящей работе, не оказывала влияния на уровень ФПК при фотодинамическом воздействии на эритроциты.

Известно, что соединения, содержащие в структуре ароматические циклы с ароматическими заместителями, например, триметоксибензойная кислота, являющаяся луксом радикалов [14].

Экспериментально показано, что цитопротективная активность триметилдикарбоновой кислоты (1-(2,3,4-триметоксиэтил)) [15] обусловлена способностью быть лукской свободных радикалов.

Антиоксидантные свойства N,N'-замещенных пиразинов (табл. 2) могут быть объяснены их антиоксидантной активностью, проявляющейся в торможении окислительных процессов на мембранах.

Используемый нами метод позволяет сделать заключение о наличии антиоксидантной активности N,N'-замещенных пиразинов, обладающих антиоксидантной и цитопротективной активностью, в том числе, на мембранах эритроцитов.

Все исследованные соединения N,N'-замещенных пиразинов в диапазоне концентраций 0,300 мМ не оказывали гемолитического действия на кровь доноров. На моделях индуцированного гемолиза у животных, введенных внутривенно соединениями, не наблюдалась гемолиз, вызванный антиоксидантом.

Результаты исследований позволяют сделать заключение о наличии антиоксидантной активности у протестированных N,N'-замещенных пиразинов, обладающих антиоксидантной активностью, что важно для их дальнейшего применения в биомедицинских исследованиях.
THE INFLUENCE OF N,N'-SUBSTITUTED PIPERAZINES ON CYTOLYSIS

O. S. Veselkina¹, I. L. Solovtsova²,³, N. N. Petrishchev⁴, L. V. Galebskaya⁵, M. E. Borovilov⁶, D. I. Nilov⁷, M. A. Solov'eva⁸, E. A. Verob'ev⁹, and K. S. Len'shina¹⁰

¹ Vertex Company, St. Petersburg, 199106 Russia
² Pavlov First St. Petersburg State Medical University, St. Petersburg, 197022 Russia
³ Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russia

We have studied the hemolytic activity of N,N'-substituted piperazines and their influence on the hemolytic process initiated by irradiation (red LED, 653 nm) in the presence of radachlorine (Radafrina Co., Russia) photosensitizer and on the complement-dependent hemolysis. All compounds did not produce human RBC lysis in the concentration range 0.15 – 3.0 mM, but showed dose-dependent inhibition of photo-induced hemolysis, as manifested by an increase in the 50% lysis time. Piperazine derivatives did not change the parameters of complement dependent hemolysis. Since the photo-induced hemolysis is mediated by the formation of reactive oxygen species, it becomes evident that the action of N,N'-substituted piperazines is related to their antioxidant properties.

Keywords: N,N'-substituted piperazines; photo-induced hemolysis; photosensitizer; antioxidants; complement system.